151 research outputs found

    Quantum state engineering using conditional measurement on a beam splitter

    Full text link
    State preparation via conditional output measurement on a beam splitter is studied, assuming the signal mode is mixed with a mode prepared in a Fock state and photon numbers are measured in one of the output channels. It is shown that the mode in the other output channel is prepared in either a photon-subtracted or a photon-added Jacobi polynomial state, depending upon the difference between the number of photons in the input Fock state and the number of photons in the output Fock state onto which it is projected. The properties of the conditional output states are studied for coherent and squeezed input states, and the probabilities of generating the states are calculated. Relations to other states, such as near-photon-number states and squeezed-state-excitations, are given and proposals are made for generating them by combining the scheme with others. Finally, effects of realistic photocounting and Fock-state preparation are discussed.Comment: 8 figures using a4.st

    Continuous-variable teleportation improvement by photon subtraction via conditional measurement

    Get PDF
    We show that the recently proposed scheme of teleportation of continuous variables [S.L. Braunstein and H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)] can be improved by a conditional measurement in the preparation of the entangled state shared by the sender and the recipient. The conditional measurement subtracts photons from the original entangled two-mode squeezed vacuum, by transmitting each mode through a low-reflectivity beam splitter and performing a joint photon-number measurement on the reflected beams. In this way the degree of entanglement of the shared state is increased and so is the fidelity of the teleported state.Comment: 7 pages REVTeX, 7 figure

    Double jumps and transition rates for two dipole-interacting atoms

    Full text link
    Cooperative effects in the fluorescence of two dipole-interacting atoms, with macroscopic quantum jumps (light and dark periods), are investigated. The transition rates between different intensity periods are calculated in closed form and are used to determine the rates of double jumps between periods of double intensity and dark periods, the mean duration of the three intensity periods and the mean rate of their occurrence. We predict, to our knowledge for the first time, cooperative effects for double jumps, for atomic distances from one and to ten wave lengths of the strong transition. The double jump rate, as a function of the atomic distance, can show oscillations of up to 30% at distances of about a wave length, and oscillations are still noticeable at a distance of ten wave lengths. The cooperative effects of the quantities and their characteristic behavior turn out to be strongly dependent on the laser detuning.Comment: Substantially revised versio

    Conditional teleportation using optical squeezers and photon counting

    Get PDF
    We suggest a scheme of using two-mode squeezed vacuum for conditional teleportation of quantum states of optical field. Alice mixes the input state with one of the squeezed modes on another squeezing device and detects the output photon numbers. The result is then communicated to Bob who shifts the photon number of his part accordingly. This is a principally realizable modification of the recent scheme [G.J. Milburn and S.L. Braunstein, Phys. Rev. A 60, 937 (1999)] where measurements of photon number difference and phase sum are considered. We show that for some classes of states this method can yield very high fidelity of teleportation, nevertheless, the success probability may be limited.Comment: 5 pages, 4 figures; notations simplified, more explicit explanatio
    • …
    corecore